
Big-Bang Reforms

Anton Kolotilin and Hongyi Li (UNSW)

June 2024



Entangled systems

• Complicated systems: accumulate design elements incrementally



Entangled systems

• Complicated systems: accumulate design elements incrementally

• Elements are interdependent (entangled with each other).
• Entanglements inhibit change

• Change may be delayed→ inefficiencies persist and accumulate

• Examples:
• Software: MS-DOS→Windows→Windows 95 ...
• Public policy: tax, healthcare



This paper:

When complicated, entangled systems face continuous pressure to change,
• Should they adapt continuously?
• Or abruptly and dramatically?

Applications to various settings:
• organizations
• public policy
• software development



This paper:

When complicated, entangled systems face continuous pressure to change,
• Should they adapt continuously?
• Or abruptly and dramatically?

Applications to various settings:
• organizations
• public policy
• software development



The Model

• Time is continuous, t ≥ 0.
• System St is a mass of infinitesimal (dm→ 0) elements.
• Each element is characterized by its:

vintage
(time of birth)

quality
(good or bad)

dependencies
(hidden position in network)



How elements work

• Designer adds and deletes elements over time.
• Each element is initially good, randomly turns bad at rate 𝜆 > 0.
• Bad elements remain bad forever (until deletion).

• Designer’s flow payoff:

𝜋t = mG(t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
mass of

good elements

− c mB(t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
mass of

bad elements

.

• Myopic Designer seeks to maximize

𝔼[d𝜋t
dt
] .



How elements work

• Designer adds and deletes elements over time.
• Each element is initially good, randomly turns bad at rate 𝜆 > 0.
• Bad elements remain bad forever (until deletion).

• Designer’s flow payoff:

𝜋t = mG(t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
mass of

good elements

− c mB(t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
mass of

bad elements

.

• Myopic Designer seeks to maximize

𝔼[d𝜋t
dt
] .



Friction

• Each newborn element randomly, immutably endowed with directed
links to existing elements:

each new element ⟶
depends on

each existing element

with probability 𝜅 ⋅ dm.

• Friction: whenever element x is deleted,

all dependents (y→ x),
dependents of dependents (z→ y→ x), etc

are also instantly deleted.



Control

At each instant t, the designer may:
• add new (good) elements at bounded rate at ∈ [0, 𝛼] (mass per unit time).
• delete any elements in St.
∗ all direct + indirect dependents of deleted elements also instantly deleted.
∗ no rate constraint: can delete discrete mass of elements instantly.



Designer’s information set

The Designer:
• Observes the type (good/bad) and vintage 𝜏 ≤ t of each element in St.
• Understands the network formation process,

but doesn’t observe time-t network.
∗ Upon deleting element, immediately observes deletion of its dependents.



Dependency network: summary of features

• Homogenous, ‘detail-free’ network;
elements are distinguished only by their (ordinal) vintage and kind.

• Entanglement is ‘limited’:
no ‘runaway’ chain deletions.

• Entanglement is ‘nonlocal’:
pairs of elements with widely differing vintages may be linked.



Smoothing out the System
At limit dm→ 0, time-t system is characterized by

Density 𝜇K(𝜏) ≥ 0 of elements
for each vintage 𝜏 ∈ [0, t] and each kind K ∈ {B,G}

with ∫
t

0
𝜇K(𝜏) = mK.

τ=t
τ

α

μ

good bad

(At the limit dm→ 0, system evolves deterministically.)



Smoothing out the System
At limit dm→ 0, time-t system is characterized by

Density 𝜇K(𝜏) ≥ 0 of elements
for each vintage 𝜏 ∈ [0, t] and each kind K ∈ {B,G}

with ∫
t

0
𝜇K(𝜏) = mK.

τ=t
τ

α

μ

good bad

(At the limit dm→ 0, system evolves deterministically.)



Preliminaries: Simple Strategies
In the optimal strategy,
• Good elements are added at maximal rate: a(t) ≡ 𝛼.
• Only bad elements are directly deleted.

So, designer effectively chooses which vintages of bad elements to (directly)
delete.



Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.

τ=t
τ

α

μ

good bad



Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.



Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.



Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.

τ=t
τ

α

μ

good bad



Last-In First-Out
The myopic designer optimally plays a threshold strategy 𝜏(St) ∈ [0, t]:

at each instant t, delete all bad elements with vintage ≥ 𝜏(St).

Intuition: recently added elements have fewer dependants, so are “cheap” to
delete



Last-In First-Out
The myopic designer optimally plays a threshold strategy 𝜏(St) ∈ [0, t]:

at each instant t, delete all bad elements with vintage ≥ 𝜏(St).

Intuition: recently added elements have fewer dependants, so are “cheap” to
delete



Dynamics

Starting from t = 0:

τ

μ



Low-Hanging Fruit

The most recent mass m of elements is constantly cleansed, where

m = log((1 + c)/𝜅).

τ=t
τ

α

μ

good bad gradual deletion



Low 𝜅: gradual reforms only

If 𝜅 ≤ c𝜆/𝛼,
total mass approaches steady-state, never exceeds threshold m:

system remains in gradual-cleansing mode forever.

τ=t
τ

α

μ



Leaking Out

If 𝜅 > c𝜆/𝛼,
Some elements get past the threshold m,

where deletions are delayed –

τ(m)
τ

α

μ

good bad gradual deletion



Big-Bang Reform

Until, after some delay,
All bad elements are deleted in an instant.

τ=t
τ

α

μ



Big-Bang Reform

Until, after some delay,
All bad elements are deleted in an instant.



Big-Bang Reform

Until, after some delay,
All bad elements are deleted in an instant.



Cycles

Then, the cycle reboots.

τ=t
τ

α

μ



Cycles

Then, the cycle reboots.

τ=t
τ

α

μ

good bad gradual deletion



Cycles

t

mass



Optimal Dynamics

Big-Bang Reforms are optimal iff 𝜅 > c𝜆/𝛼, i.e.

1 entanglement (𝜅) is high.
2 cost of retaining bad elements (c) is low.
3 productivity of designer (𝛼) is high.
4 good elements turn bad slowly (𝜆 is low).



Friction over the cycle.

Recall: 𝜋(t) = mG − c ⋅mB.
So, delete elements only when friction is low:

𝛿G/𝛿B⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
friction

≤ c.



The shape of friction.

Given last-in-first-out rule,
Friction is quasi-concave in scale of deletion:

Friction is low iff very few/many elements deleted.

t=τ
τ

c

f



“Excavation” effect

Suppose: at each time t, designer chooses threshold vintage 𝜏(t),
deletes all (good + bad) elements w/ vintage ≥ 𝜏(t).



Archaeological Economics

In this setting:
Marginal friction = good:bad ratio at threshold vintage

which increases with older vintages;
⇒ friction strictly decreases with scale.



Archaeological Economics

In this setting:
Marginal friction = good:bad ratio at threshold vintage

which increases with older vintages;
⇒ friction strictly decreases with scale.



Archaeological Economics

In this setting:
Marginal friction = good:bad ratio at threshold vintage

which increases with older vintages;
⇒ friction strictly decreases with scale.



Untangling effect

Consider a “simple” distribution:
elements older (younger) than ̂𝜏 are all bad (good).

how does marginal friction change with deletion threshold 𝜏 ≤ ̂𝜏?

τ τ=t
τ

α

μ



Untangling effect

Consider a “simple” distribution:
elements older (younger) than ̂𝜏 are all bad (good).

how does marginal friction change with deletion threshold 𝜏 ≤ ̂𝜏?



Untangling effect

As more bad elements deleted:
fewer good elements remain

⇒ the marginal (bad) deleted element has fewer (good) dependents
⇒ friction decreases with scale.



Untangling effect

As more bad elements deleted:
fewer good elements remain

⇒ the marginal (bad) deleted element has fewer (good) dependents
⇒ friction decreases with scale.



Untangling effect

As more bad elements deleted:
fewer good elements remain

⇒ the marginal (bad) deleted element has fewer (good) dependents
⇒ friction decreases with scale.



Untangling effect

As more bad elements deleted:
fewer good elements remain

⇒ the marginal (bad) deleted element has fewer (good) dependents
⇒ friction decreases with scale.



Why Big-Bang Reforms

Two forces drive big-bang reforms:
• “Excavation” effect and “untangling” effect.
∗ Parallel forces: each drives big-bang reforms even even in isolation.

• With non-myopic designer, third force emerges: intertemporal tradeoffs
lead, again, to big-bang reforms

Take-away points:
• Multiple “parallel” mechanisms – big-bang reforms are a relatively robust

phenomenon.
• Big-bang reforms are optimal iff system is complicated (high 𝜅).



1 Intro

2 Model

3 Preliminaries

4 Dynamics

5 Appendix: Laws of Motion



Laws of motion

At each instant t, the Designer chooses
for each vintage 𝜏 and each kind K ∈ {B,G},

gradual deletions 𝛿Q(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cubits / second

and jump deletions 𝛥Q(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cubits

to control the system (𝜇G(𝜏, t), 𝜇B(𝜏, t)) via

d𝜇G(𝜏, t) = − 𝜆𝜇G(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decay

− 𝛽G(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gradual removal

− 𝛥G(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
jump removal

,

d𝜇B(𝜏, t) = + 𝜆𝜇B(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decay

− 𝛽B(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gradual removal

− 𝛥B(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
jump removal



Laws of motion

At each instant t, the Designer chooses
for each vintage 𝜏 and each kind K ∈ {B,G},

gradual deletions 𝛿Q(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cubits / second

and jump deletions 𝛥Q(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cubits

to control the system (𝜇G(𝜏, t), 𝜇B(𝜏, t)) via

d𝜇G(𝜏, t) = − 𝜆𝜇G(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decay

− 𝛽G(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gradual removal

− 𝛥G(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
jump removal

,

d𝜇B(𝜏, t) = + 𝜆𝜇B(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decay

− 𝛽B(𝜏, t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gradual removal

− 𝛥B(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
jump removal



Laws of motion

At each instant t, the Designer chooses
for each vintage 𝜏 and each kind K ∈ {B,G},

gradual deletions 𝛿Q(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cubits / second

and jump deletions 𝛥Q(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cubits

subject to frictional constraints: for each Q ∈ {B,G},

𝛽Q(𝜏, t)
𝜇Q(t)
≥ 𝜅 ⋅ 𝜕𝜕tD(𝜏, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

rate constraint

and
𝛥Q(𝜏, t)
𝜇Q(t)
≥ f (𝜅𝛥D(𝜏, t))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
jump constraint

where f(x) = 1 − e−x and

D(𝜏, t) = ∑
Q∈{B,G}
∫
𝜏

0
(∫

t

𝜏
𝛽Q(𝜏, t′)dt′ + ∑

t ∈[𝜏,t)
𝛥Q(𝜏, t′))d𝜏′

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
mass of deleted elements older than 𝜏

.


	Intro
	

	Model
	

	Preliminaries
	

	Dynamics
	

	Appendix: Laws of Motion
	


