Big-Bang Reforms

Anton Kolotilin and Hongyi Li (UNSW)

June 2024

Entangled systems

• Complicated systems: accumulate design elements incrementally

Entangled systems

- Complicated systems: accumulate design elements incrementally
- Elements are interdependent (*entangled* with each other).
- Entanglements inhibit change
- Change may be delayed \rightarrow inefficiencies persist and accumulate
- Examples:
	- Software: MS-DOS \rightarrow Windows \rightarrow Windows 95 ...
	- Public policy: tax, healthcare

This paper:

When complicated, entangled systems face continuous pressure to change,

- Should they adapt *continuously*?
- Or *abruptly* and dramatically?

Applications to various settings:

- organizations
- public policy
- software development

This paper:

When complicated, entangled systems face continuous pressure to change,

- Should they adapt *continuously*?
- Or *abruptly* and dramatically?

Applications to various settings:

- organizations
- public policy
- software development

The Model

- Time is continuous, $t \geq 0$.
- System S_t is a mass of infinitesimal $(dm \rightarrow 0)$ elements.
- Each element is characterized by its:

vintage (time of birth)

quality (good or bad) dependencies

(hidden position in network)

How elements work

- Designer adds and deletes elements over time.
- Each element is initially good, randomly turns bad at rate $\lambda > 0$.
- Bad elements remain bad forever (until deletion).
- Designer's flow payoff:

$$
\pi_t = \frac{m_G(t)}{\text{meas of}} - c \frac{m_B(t)}{\text{meas of}}.
$$

• **Myopic** Designer seeks to maximize

$$
\mathbb{E}\left[\frac{d\,\pi_t}{dt}\right].
$$

How elements work

- Designer adds and deletes elements over time.
- Each element is initially good, randomly turns bad at rate $\lambda > 0$.
- Bad elements remain bad forever (until deletion).
- Designer's flow payoff:

$$
\pi_t = \underbrace{m_G(t)}_{\text{mass of} \atop \text{good elements}} - c \underbrace{m_B(t)}_{\text{mass of} \atop \text{bad elements}}.
$$

• **Myopic** Designer seeks to maximize

$$
\mathbb{E}\left[\frac{d\,\pi_t}{dt}\right].
$$

Friction

• Each newborn element randomly, immutably endowed with directed links *to* existing elements:

> each new element \longrightarrow each existing element depends on with probability $\kappa \cdot dm$.

• *Friction*: whenever element *x* is deleted,

all dependents ($y \rightarrow x$), dependents of dependents $(z \rightarrow y \rightarrow x)$, etc are also instantly deleted.

Control

At each instant *t*, the designer may:

- add new (good) elements at bounded rate $a_t \in [0, \alpha]$ (mass per unit time).
- delete any elements in S_t .
- ∗ all direct + indirect dependents of deleted elements also instantly deleted.
- ∗ no rate constraint: can delete discrete mass of elements instantly.

Designer's information set

The Designer:

- Observes the type (good/bad) and vintage $\tau \leq t$ of each element in S_t .
- Understands the network formation process, but *doesn't observe time-t network*.
- ∗ Upon deleting element, immediately observes deletion of its dependents.

Dependency network: summary of features

- Homogenous, 'detail-free' network; elements are distinguished only by their (ordinal) vintage and kind.
- Entanglement is 'limited': no 'runaway' chain deletions.
- Entanglement is 'nonlocal': pairs of elements with widely differing vintages may be linked.

Smoothing out the System

At limit $dm \rightarrow 0$, time-*t* system is characterized by Density $\mu_K(\tau) \geq 0$ of elements for each vintage $\tau \in [0, t]$ and each kind $K \in \{B, G\}$ with ∫ *t* $\mu_K(\tau) = m_K.$ τ=t τ α μ $qood$ bad

(At the limit $dm \rightarrow 0$, system evolves deterministically.)

Smoothing out the System

At limit $dm \rightarrow 0$, time-*t* system is characterized by Density $\mu_K(\tau) \geq 0$ of elements for each vintage $\tau \in [0, t]$ and each kind $K \in \{B, G\}$ with ∫ *t* $\mu_K(\tau) = m_K.$ τ=t τ α μ $qood$ bad

(At the limit $dm \rightarrow 0$, system evolves deterministically.)

Preliminaries: Simple Strategies

In the optimal strategy,

- Good elements are added at maximal rate: $a(t) \equiv \alpha$.
- Only bad elements are directly deleted.

So, designer effectively chooses which vintages *of bad elements* to (directly) delete.

Last-In First-Out

The myopic designer optimally plays a threshold strategy $\overline{\tau}(S_t) \in [0, t]$:

at each instant t, delete all bad elements with vintage $\geq \overline{\tau}(S_t)$ *.*

Intuition: recently added elements have fewer dependants, so are "cheap" to delete

Last-In First-Out

The myopic designer optimally plays a threshold strategy $\overline{\tau}(S_t) \in [0, t]$:

at each instant t, delete all bad elements with vintage $\geq \overline{\tau}(S_t)$ *.*

Intuition: recently added elements have fewer dependants, so are "cheap" to delete

Dynamics

Starting from *t* = 0:

Low-Hanging Fruit

The most recent mass \overline{m} of elements is constantly cleansed, where

 $\overline{m} = \log((1+c)/\kappa).$

Low κ : gradual reforms only

If $\kappa \le c\lambda/\alpha$,

total mass approaches steady-state, never exceeds threshold *m*: system remains in gradual-cleansing mode forever.

Leaking Out

If $\kappa > c\lambda/\alpha$,

Some elements get past the threshold *m*, where deletions are delayed –

Big-Bang Reform

Until, after some delay, All bad elements are deleted in an instant.

Big-Bang Reform

Until, after some delay, All bad elements are deleted in an instant.

Big-Bang Reform

Until, after some delay, All bad elements are deleted in an instant.

Then, the cycle reboots.

Then, the cycle reboots.

τ

Cycles

Big-Bang Reforms are optimal iff $\kappa > c\lambda/\alpha$, i.e.

- **0** entanglement (κ) is high.
- 2 cost of retaining bad elements (*c*) is low.
- 3 productivity of designer (α) is high.
- 4 good elements turn bad slowly $(\lambda \text{ is low})$.

Friction over the cycle.

 $Recall: \pi(t) = m_G - c \cdot m_B.$ So, delete elements only when friction is low: $\delta_G/\delta_B \leq c$. friction μ $good$ $\mathsf{bad} \ \varnothing$ targeted $\mathbb N$ deleted α δ_G δ_B τ $\tau = t$

The shape of friction.

Given last-in-first-out rule,

Friction is quasi-concave in scale of deletion: Friction is low iff very few/many elements deleted.

"Excavation" effect

Suppose: at each time *t*, designer chooses threshold vintage $\overline{\tau}(t)$, deletes all (good + bad) elements w/ vintage $\geq \overline{\tau}(t)$.

Archaeological Economics

Archaeological Economics

 μ

Archaeological Economics

Consider a "simple" distribution: elements older (younger) than $\hat{\tau}$ are all bad (good). how does marginal friction change with deletion threshold $\bar{\tau} \leq \hat{\tau}$?

Consider a "simple" distribution: elements older (younger) than $\hat{\tau}$ are all bad (good). how does marginal friction change with deletion threshold $\bar{\tau} \leq \hat{\tau}$?

As more bad elements deleted: fewer good elements remain \Rightarrow the marginal (bad) deleted element has fewer (good) dependents \Rightarrow friction decreases with scale.

As more bad elements deleted:

fewer good elements remain

\Rightarrow the marginal (bad) deleted element has fewer (good) dependents

 \Rightarrow friction decreases with scale.

As more bad elements deleted:

fewer good elements remain

\Rightarrow the marginal (bad) deleted element has fewer (good) dependents

 \Rightarrow friction decreases with scale.

As more bad elements deleted:

fewer good elements remain

\Rightarrow the marginal (bad) deleted element has fewer (good) dependents

 \Rightarrow friction decreases with scale.

Why Big-Bang Reforms

Two forces drive big-bang reforms:

- "Excavation" effect and "untangling" effect.
- ∗ Parallel forces: each drives big-bang reforms even even in isolation.
- With non-myopic designer, third force emerges: intertemporal tradeoffs lead, again, to big-bang reforms

Take-away points:

- Multiple "parallel" mechanisms big-bang reforms are a relatively robust phenomenon.
- Big-bang reforms are optimal iff system is complicated (high κ).

O Intro

2 Model

^O Preliminaries

4 Dynamics

5 Appendix: Laws of Motion

Laws of motion

At each instant *t*, the Designer chooses for each vintage τ and each kind $K \in \{B, G\}$,

$$
d\mu_G(\tau, t) = -\underbrace{\lambda \mu_G(\tau, t) dt}_{\text{decay}} -
$$

$$
d\mu_B(\tau, t) = +\underbrace{\lambda \mu_B(\tau, t) dt}_{\text{decay}} -
$$

$$
\frac{\beta_G(\tau,t)dt}{\sqrt{2\pi\sigma^2}}
$$

$$
- \quad \underline{\Delta_G(\tau,t)}
$$

$$
- \qquad \underline{\beta_B(\tau,t)dt}
$$

 $\Delta_B(\tau, t)$

Laws of motion

At each instant *t*, the Designer chooses for each vintage τ and each kind $K \in \{B, G\}$,

to control the system $(\mu_G(\tau, t), \mu_B(\tau, t))$ via

$$
d\mu_G(\tau, t) = -\underbrace{\lambda \mu_G(\tau, t) dt}_{\text{decay}} - \underbrace{\beta_G(\tau, t) dt}_{\text{gradual removal}} - \underbrace{\Delta_G(\tau, t)}_{\text{jump removal}}
$$

\n
$$
d\mu_B(\tau, t) = +\underbrace{\lambda \mu_B(\tau, t) dt}_{\text{decay}} - \underbrace{\beta_B(\tau, t) dt}_{\text{gradual removal}} - \underbrace{\Delta_B(\tau, t)}_{\text{jump removal}}
$$

Laws of motion

mass of deleted elements older than τ