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We study monotone persuasion in the linear case, where a posterior distribution over states
is summarized by its mean. We identify two settings where the optimal unrestricted signal
can be nonmonotone. In the first setting, the optimal unrestricted signal requires randomiza-
tion. In the second setting, the optimal unrestricted signal entails nonmonotone pooling of
states. We solve for the optimal monotone signal in each setting, and illustrate our results
with an application to media censorship.
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1. INTRODUCTION

The literature on Bayesian persuasion has largely focused on the linear case, where the state
space is one-dimensional and a posterior distribution over states is summarized by its mean
(e.g., Gentzkow and Kamenica 2016, Kolotilin et al. 2017, Kolotilin 2018, Dworczak and Mar-
tini 2019). The standard approach has been to analyze unrestricted persuasion, where the set
of feasible signals is unrestricted. In reality, however, various feasibility constraints bind due
to incentive, legal, or other practical reasons. One such constraint is that signals should be de-
terministic. For instance, the bank regulator may be precluded from implementing a stochastic
stress test if they cannot credibly and verifiably randomize scores. A second constraint is that
signals should be monotone. For instance, a bank regulator may be precluded from using a
stress test that gives a higher score to a weaker bank.

These concerns have led to a literature on monotone persuasion (Ivanov 2021, Mensch 2021,
and Onuchic and Ray 2023) where all feasible signals are deterministic and monotone in that
they partition the state space into convex sets (i.e., intervals and singletons).1 However, these
papers do not address the linear case. In the literature that deals with the linear case, Dwor-
czak and Martini (2019) delineate conditions under which monotone persuasion is optimal,
so that standard results from unrestricted persuasion apply.2 It remains an open question what
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the solution to the monotone persuasion problem is when optimal unrestricted signals are (i)
non-deterministic or (ii) nonmonotone. We take first steps towards answering this question by
deriving the optimal monotone signal in two distinct settings which separately address (i) and
(ii).

First, we consider the simplest setting where randomization is valuable: the state is discrete,
and the objective function is s-shaped (convex, then concave). Here, it is known that the optimal
unrestricted signal involves “stochastic upper censorship” where low states are separated, high
states are pooled, and the cutoff state is randomly either separated or pooled with high states.
We show that the optimal monotone signal has the same “upper censorship” form, but does not
randomize at the cutoff state.

Second, we consider the simplest setting where nonmonotone pooling of states is valuable:
the state is continuous, and the objective function is m-shaped (concave-convex-concave). If
an optimal unrestricted signal is nonmonotone, then it induces two signal realizations that con-
cavify the objective function. In this case, we show that the optimal monotone signal partitions
the state space into one or two intervals.

Our two settings are chosen for simplicity, but the methodology we develop can be adapted
to analyse more general cases. In particular, it is straightforward to allow for (i) a convex-
concave-convex objective if the state is discrete and (ii) a convex-concave-convex-concave-
convex objective if the state is continuous. In other words, adding a convex region on any
side of the objective does not present any further conceptual challenges. More general cases
where the objective function has even more inflection points are less likely to be relevant in
applications.

We illustrate our results using Kolotilin et al.’s (2022) media censorship model, which fea-
tures a government, heterogeneous citizens, and media outlets. We show that the government’s
problem reduces to a monotone persuasion problem. Our first setting corresponds to the case
where there is initially a finite number of media outlets and the distribution of citizens’ types
is unimodal. In this case, the government permits all sufficiently supportive media outlets and
censors all other media outlets, which extends Kolotilin et al.’s (2022) result on the optimality
of upper censorship from the continuous case to the discrete one. Our second setting corre-
sponds to the case where there is initially a continuum of media outlets and the distribution of
citizens’ types is bimodal (i.e., society is polarized). In this case, the government permits at
most one media outlet and censors all other media outlets.

2. MODEL

A state ω ∈ [0,1] is a random variable with a prior probability distribution function F . A
signal reveals information about the state. An objective V : [0,1] 7→ R is a twice continuously
differentiable function of the expected state m induced by a signal.

In many applications, the state is either continuous or discrete. The state is continuous if F
has a strictly positive density f on [0,1]. The state is discrete if the support of F , denoted by
supp(F ), is a finite subset of [0,1]. The discrete density is also denoted by f .

In an unrestricted persuasion problem, a signal can be arbitrarily correlated with the state. By
Blackwell (1951), there exists a signal that induces a probability distribution G of the expected
state m iff the prior distribution F is a mean-preserving spread of G (e.g., Kolotilin 2018).

generality (Kolotilin and Zapechelnyuk 2024), while deterministic (possibly nonmonotone) signals are without loss
of generality if the state is continuous (Arieli et al. 2023).
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Thus, the unrestricted persuasion problem is to maximize
∫ 1

0
V (m)dG(m) over distributions

G such that F is a mean-preserving spread of G.
In a monotone persuasion problem, a signal is required to be monotone: it pools the states

into convex sets (i.e., intervals and singletons) and reveals which set contains the realized state.
Formally, a monotone signal is an increasing function µ : [0,1] 7→ [0,1]. W.l.o.g., we identify
each realization m with the expected state induced by this realization, so m= E[ω|µ(ω) =m].
Let M be the set of monotone signals. Thus, the monotone persuasion problem is to maximize∫ 1

0
V (µ(ω))dF (ω) over monotone signals µ ∈M.

Dworczak and Martini (2019) show that there exists a monotone signal that solves the un-
restricted persuasion problem if the state is continuous and the objective function is affine
closed. In particular, V is affine closed if it has no m-shaped region: there do not exist
0 ≤ ω < ωL < ωR < ω ≤ 1 such that V is strictly concave on [ω,ωL], strictly convex on
[ωL, ωR], and strictly concave on [ωR, ω].

We study two simplest cases where no monotone signal solves the unrestricted persuasion
problem. In Section 3, the objective is s-shaped but the state is discrete. In Section 4, the state is
continuous but the objective is m-shaped. In both cases, existing approaches from the Bayesian
persuasion literature, such as concavification and linear programming duality, no longer apply,
because the monotone persuasion problem is not a linear program.

3. DISCRETE STATE AND S-SHAPED OBJECTIVE

In this section, the state is discrete and the objective is s-shaped. The objective function V
is s-shaped if there exists 0 < ωM < 1 such that V is strictly convex on [0, ωM ] and strictly
concave on [ωM ,1].

A signal is stochastic upper censorship if there exist ω∗ ∈ supp(F ) and q∗ ∈ [0,1] such
that states in [0, ω∗) are separated, states in (ω∗,1] are pooled, and state ω∗ is separated with
probability q∗ and pooled with probability 1− q∗. Let

m∗ =

ω∗(1− q∗)f(ω∗) +
∑
ω>ω∗

ωf(ω)

(1− q∗)f(ω∗) +
∑
ω>ω∗

f(ω)
(1)

be the expected state conditional on the pooling signal realization. A stochastic upper-
censorship signal with (ω∗, q∗) is deterministic upper censorship if q∗ ∈ {0,1}. This is the
monotone signal µ given by

µ(ω) =


ω, ω ∈ [0, ω∗),

ω∗, ω = ω∗ and q∗ = 1,

m∗, ω = ω∗ and q∗ = 0,

m∗, ω ∈ (ω∗,1],

By Alonso and Câmara (2016) and Kolotilin et al. (2022), there exist ω∗ ∈ supp(F ) and
q∗ ∈ [0,1] satisfying

V (m∗) + V ′(m∗)(ω∗ −m∗)≥ V (ω∗), with equality if (ω∗, q∗) ̸= (0,0), (2)

such that stochastic upper censorship with (ω∗, q∗) solves the unrestricted persuasion problem.
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THEOREM 1: If the state is discrete, V is s-shaped, and (ω∗, q∗) is given by (2), then there
exists q∗∗ ∈ {0,1} such that deterministic upper censorship with (ω∗, q∗∗) solves the monotone
persuasion problem.

One may expect that if all deterministic (not necessarily monotone) signals were allowed,
then deterministic upper censorship would still be optimal when V is s-shaped. This, however,
is not true. For example, suppose that the state ω takes values 0, ε, and 1 with probabilities 1/4,
1/2, and 1/4, where ε > 0 is sufficiently small. Suppose that V is such that stochastic upper
censorship that separates state ε with probability q∗ = 1/2 solves the unrestricted persuasion
problem. In this case, the optimal deterministic signal would pool states 0 and 1, and separate
state ε.

4. CONTINUOUS STATE AND M-SHAPED OBJECTIVE

In this section, the state is continuous and the objective is m-shaped. The objective function
V is m-shaped if there exist 0<ωL <ωR < 1 such that V is strictly concave on [0, ωL], strictly
convex on [ωL, ωR], and strictly concave on [ωR,1].

A monotone signal µ is interval disclosure with cutoffs 0 ≤ ω∗
L ≤ ω∗

R ≤ 1 if it separates
states in the middle interval [ω∗

L, ω
∗
R] and pools states in the left interval [0, ω∗

L) and in the right
interval (ω∗

R,1], so

µ(ω) =


m∗

L, ω ∈ [0, ω∗
L),

ω, ω ∈ [ω∗
L, ω

∗
R],

m∗
R, ω ∈ (ω∗

R,1],

where

m∗
L = E

[
ω|ω ∈ [0, ω∗

L]
]

and m∗
R = E

[
ω|ω ∈ [ω∗

R,1]
]

are the expected states conditional on the pooling signal realizations. A monotone signal µ
is a cutoff rule with cutoff ω∗ if it pools states in the intervals [0, ω∗) and (ω∗,1]. Finally, a
monotone signal µ is no disclosure if it pools all states in [0,1]. Note that no disclosure is a
special case of a cutoff rule, which is, in turn, a special case of interval disclosure.

THEOREM 2: If the state is continuous and V is m-shaped, then interval disclosure solves
the monotone persuasion problem, as follows:

(i) If there exist ω∗
L, ω

∗
R ∈ (ωL, ωR) with ω∗

L <ω∗
R such that

V (m∗
L) + V ′(m∗

L)(ω
∗
L −m∗

L) = V (ω∗
L), (3)

V (m∗
R) + V ′(m∗

R)(ω
∗
R −m∗

R) = V (ω∗
R), (4)

then interval disclosure with cutoffs ω∗
L and ω∗

R solves the monotone persuasion problem.
Also, m∗

L ∈ (0, ωL) and m∗
R ∈ (ωR,1).

(ii) Else if there exists ω∗ = ω∗
L = ω∗

R ∈ (0,1) such that

V (m∗
L) + V ′(m∗

L)(ω
∗ −m∗

L) = V (m∗
R) + V ′(m∗

R)(ω
∗ −m∗

R), (5)

V (m∗
L)F (ω∗) + V (m∗

R)(1− F (ω∗))≥ V (E[ω]), (6)

then the cutoff rule with cutoff ω∗ solves the monotone persuasion problem. Also, m∗
L ∈

(0, ωL) and m∗
R ∈ (ωR,1).
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(d) No disclosure

FIGURE 1.—Interval disclosure when V is m-shaped

(iii) Else, no disclosure is optimal.

Theorem 2 shows that a signal that solves the monotone persuasion problem takes one of
three forms: interval disclosure (Figure 1a), a cutoff rule (Figures 1b and 1c), and no disclo-
sure (Figure 1d). Moving along Figures 1a → 1b → 1c → 1d, the prior distribution F puts
increasingly more weight on left and right states (and less weight on middle states).

If (3) and (4) hold (Figure 1a), or if (5) and (6) hold and V ′(m∗
L) ≤ V ′(m∗

R) (Figure 1b),
then optimal interval disclosure solves the unrestricted persuasion problem (see Kolotilin 2018,
Proposition 3).

Otherwise (Figures 1c and 1d), there is a continuum of distinct signals that solve the unre-
stricted persuasion problem. All of them are nonmonotone and induce the same two expected
states that yield the value coV (E[ω]), where coV (E[ω]) is the concavification of V at E[ω],
shown by the red dot in Figures 1c and 1d.3 In contrast, the signal described in parts (ii) and
(iii) of Theorem 2 uniquely solves the monotone persuasion problem and yields a strictly lower
value, shown by the black dot in Figures 1c and 1d.

3The concavification of V is defined as coV (ω) =minv∈V v(ω), for ω ∈ [0,1], where V is the set of all concave
functions v on [0,1] such that v(ω)≥ V (ω) for all ω ∈ [0,1].
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5. APPLICATION TO MEDIA CENSORSHIP

We illustrate our results using a simplified version of the media censorship model in Kolotilin
et al. (2022). There is a government and a continuum of heterogeneous citizens. The govern-
ment’s quality θ ∈ [0,1] has a distribution T with a strictly positive density on [0,1]. Citizens
are indexed by r ∈ [0,1] that has a distribution V with a continuously differentiable density on
[0,1]. The utility of a citizen of type r is

u(ar, θ, r) = (θ− r)ar,

where ar ∈ {0,1} is the citizen’s action. The government’s utility is the aggregate action in the
society

∫ 1

0
ardV (r).

Citizens obtain information about the government’s quality θ through media outlets. Each
media outlet is identified by its editorial policy c ∈ [0,1], and it endorses action a= 1 if θ ≥ c
and endorses action a= 0 if θ < c. The set of media outlets C is a subset of [0,1].

The government’s censorship policy is a set of media outlets X ⊂ C that are censored. The
other media outlets in C\X are permitted to broadcast.

The timing is as follows. First, the government chooses a set X ⊂C of censored media out-
lets. Second, the government’s quality θ is realized, and each permitted media outlet endorses
action a= 1 or a= 0 according to its editorial policy. Finally, each citizen observes messages
from all permitted media outlets, updates beliefs about θ, and chooses an action.

Consider a censorship policy X ⊂ C . Let yX be a random variable equal to the conditional
expectation of θ given messages from all media outlets in C\X . Let GX denote the distri-
bution of yX . Each citizen of type r chooses ar = 1 iff r ≤ yX . Then, the aggregate action
is

∫ 1

0
ardV (r) = V (yX), and the government’s expected utility is

∫ 1

0
V (y)dGX(y). Let GC

denote the set of distributions GX induced by all censorship policies X ⊂C .
Define the state ω as the conditional expectation of θ given messages from all media outlets

in C . That is, ω = y∅ and its distribution is F =G∅. Consider a monotone signal µ, which is
an increasing function satisfying E[ω|µ(ω) =m] =m for all m. Let Gµ denote the distribution
of m= µ(ω). Then, the value of µ is

∫ 1

0
V (µ(ω))dF (ω) =

∫ 1

0
V (m)dGµ(m). Let GM denote

the set of distributions Gµ induced by all monotone signals µ ∈M.
The next proposition shows that an outcome is implementable by a monotone signal iff it

is implementable by a censorship policy. Thus, the media censorship problem reduces to a
monotone persuasion problem.

PROPOSITION 1: GC = GM .

To see the intuition behind Proposition 1, suppose that there is only one media outlet with
an editorial policy c ∈ (0,1). There are two states, E[θ|θ ≤ c] and E[θ|θ ≥ c]. Every monotone
signal induces one of two possible outcomes: the states are separated or pooled. Each of the
two outcomes is implementable by permitting or censoring the media outlet.

If there is a finite number of media outlets, then the state ω is discrete. By Theorem 1,
if V is s-shaped (i.e., the distribution of citizens’ types is unimodal), then the government
optimally censors all media outlets whose editorial policies are below some cutoff. That is, all
censored media outlets are less supportive than all permitted media outlets in that they endorse
the government’s preferred action a= 1 less frequently.

If there is a continuum of media outlets C = [0,1], then the state ω is continuous and has
distribution F = T . By Theorem 2, if V is m-shaped (i.e., the distribution of citizens’ types is
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bimodal), then the government’s optimal censorship policy takes one of three forms.4 At one
extreme, if the distribution of the government’s quality T is sufficiently concentrated (part (i)
of Theorem 2), then the government optimally permits a range of moderate media outlets. At
the other extreme, if T is sufficiently spread out (part (iii) of Theorem 2), then the govern-
ment optimally censors all media outlets. In the intermediate case (part (ii) of Theorem 2), the
government optimally permits only one moderate media outlet.

Roughly speaking, the case of unimodal V corresponds to a homogenous society where
most citizens are moderates, and the case of bimodal V corresponds to a polarized society
where most citizens are either extreme supporters or extreme opponents. It seems intuitive
that the government optimally censors the least supportive media outlets, when the society is
homogenous. But it may seem counterintuitive that the government may also optimally censor
the most supportive media outlets, when the society is polarized. Such a censorship policy
ensures that extreme supporters continue to choose the government’s preferred action even if
no permitted media outlets endorse it.
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APPENDIX A: PROOFS

A.1. Single-Crossing Lemma

We present a lemma adapted from Kolotilin et al. (2022), which is used in the proofs of
Theorems 1 and 2.

Define ∆(ω,m) = V (ω)− V (m)− V ′(m)(ω−m).

LEMMA 1: Let 0≤ ωL <ωR < 1. Suppose that V is strictly convex on [ωL, ωR] and strictly
concave on [ωR,1]. Then ∆(ω,m)< 0 for all ω,m ∈ [ωR,1], with ω <m. Moreover, if ωL ≤
ω1 ≤ ω2 <ωR ≤m1 ≤m2 ≤ 1, with (ω1,m1) ̸= (ω2,m2), then

∆(ω1,m1)≤ 0 =⇒ ∆(ω2,m2)< 0. (7)

PROOF: By integration by parts,∫ m

ω

V ′′(z)(z − ω)dz = V ′(z)(z − ω)
∣∣m
ω
−
∫ m

ω

V ′(z)dz

= V ′(m)(m− ω)− (V (m)− V (ω)) =∆(ω,m).

Since V is strictly concave on [ωR,1], we have V ′′(z)< 0 for almost all z ∈ [ωR,1], and hence
∆(ω,m)< 0 for all ω,m ∈ [ωR,1], with ω <m. Next,

∆(ω2,m2) =

∫ m2

ω2

V ′′(z)(z − ω2)dz ≤
∫ m1

ω2

V ′′(z)(z − ω2)dz

=

∫ m1

ω2

V ′′(z)(z − ω1)
z − ω2

z − ω1

dz ≤ ωR − ω2

ωR − ω1

∫ m1

ω2

V ′′(z)(z − ω1)dz

≤ ωR − ω2

ωR − ω1

∫ m1

ω1

V ′′(z)(z − ω1)dz ≤ 0,

where the first inequality holds because ωR ≤ m1 ≤ m2 ≤ 1 and V is concave on [ωR,1],
the second inequality holds because V is convex on [ωL, ωR], concave on [ωR,1], and (z −
ω2)/(z−ω1) is increasing in z, the third inequality holds because ωL ≤ ω1 ≤ ω2 <ωR and V is
convex on [ωL, ωR], and the fourth inequality holds by ∆(ω1,m1)≤ 0. Moreover, ∆(ω2,m2)<

0 if ω1 < ω2 because the third inequality is strict by strict convexity of V on [ωL, ωR], and
∆(ω2,m2) < 0 if m1 < m2 because the first inequality is strict by strict concavity of V on
[ωR,1]. Q.E.D.

A.2. Proof of Theorem 1

When the state is discrete, the problem of finding an optimal monotone signal is a discrete
optimization problem, which cannot be solved using the existing tools from the persuasion liter-
ature. To prove Theorem 1, we first show that any monotone signal different from deterministic
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upper censorship is suboptimal, and then we show that optimal deterministic upper censor-
ship has the same cutoff as the stochastic upper censorship signal that solves the unrestricted
persuasion problem.

PROOF OF THEOREM 1: Let supp(F ) = {ω1, . . . , ωn}, with natural n and ω1 < . . . < ωn.
For each 1 ≤ i < j ≤ n, denote fj = f(ωj), fi:j = P(ω ∈ {ωi, . . . , ωj}), and mi:j = E[ω|ω ∈
{ωi, . . . , ωj}].

Suppose by contradiction that there exists a monotone signal µ that is not deterministic upper
censorship. Then there exist 1≤ i < j < k ≤ n and two signal realizations: s1 that pools states
{ωi, . . . , ωj} and s2 that pools states {ωj+1, . . . , ωk}. Let µ− and µ+ be monotone signals
that differ from µ only in that µ− merges signal realizations s1 and s2 of µ into one signal
realization that pools states {ωi, . . . , ωk} and µ+ splits signal realization s1 of µ into two signal
realizations: one that separates state ωj and one that pools remaining states {ωi, . . . , ωj−1}.
Denote the value of signals µ−, µ, and µ+ by W−, W , and W+.

To obtain a contradiction, it suffices to show that W ≥W+ implies W <W−. So, suppose
that W ≥W+, which is equivalent to

V (mi:j)≥
fi:j−1

fi:j
V (mi:j−1) +

fj
fi:j

V (ωj). (8)

Since V is strictly convex on [0, ωM ] and (8) holds, it follows that ωM <ωj .
We now show that W <W−, which is equivalent to

V (mi:k)>
fi:j
fi:k

V (mi:j) +
fj+1:k

fi:k
V (mj+1:k). (9)

If ωM ≤mi:j , then (9) follows from strict concavity of V on [ωM ,1]. So, suppose that ωM ∈
(mi:j , ωj). By ωM <ωj <mj+1:k and strict concavity of V on [ωM ,1], we have

V (ωM)<
mj+1:k − ωM

mj+1:k − ωj

V (ωj) +
ωM − ωj

mj+1:k − ωj

V (mj+1:k). (10)

We also have

V (ωM)>
mi:j − ωM

mi:j −mi:j−1

V (mi:j−1) +
ωM −mi:j−1

mi:j −mi:j−1

V (mi:j)

≥ ωj − ωM

ωj −mi:j−1

V (mi:j−1) +
ωM −mi:j−1

ωj −mi:j−1

V (ωj),

(11)

where the first inequality is by mi:j−1 <mi:j <ωM and strictly convexity of V on [0, ωM ], and
the second inequality is by (8). Combining (10) and (11) yields

V (ωM)>
mj+1:k − ωM

mj+1:k −mi:j−1

V (mi:j−1) +
ωM −mi:j−1

mj+1:k −mi:j−1

V (mj+1:k). (12)
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ωM mj+1:kmi:j−1

A

C

B

mi:j ωj

V (mi:j−1)

V (ωM)

V (mj+1:k)

D

V (mi:j)

FIGURE A.1.

As illustrated in Figure A.1, by (12), (ωM , V (ωM)) is above the solid line A connecting
(mi:j−1, V (mi:j−1)) and (mj+1:k, V (mj+1:k)). Then, by strict concavity of V on [ωM ,1],
(ωj , V (ωj)) is above the dashed line C connecting (ωM , V (ωM)) and (mj+1:k, V (mj+1:k)),
and thus above the line A. So, by (8), (mi:j , V (mi:j)) is also above the line A. Next, observe
that (mi:k, V (mi:k)) must be in the shaded area in Figure A.1. Indeed, if mi:k < ωM , then,
by strict convexity of V on [0, ωM ], (mi:k, V (mi:k)) is above the dashed line D connecting
(mi:j−1, V (mi:j−1)) and (mi:j , V (mi:j)). If mi:k > ωM , then, by strict concavity of V on
[ωM ,1], (mi:k, V (mi:k)) is above the line C . So, (9) holds.

We now show that the optimal deterministic upper censorship cutoff coincides with the opti-
mal stochastic upper censorship cutoff. For each z ∈ [ω1, ωn], define

j(z) =max{i ∈ {1, . . . , n} : ωi ≤ z},

q(z) =
z − ωj(z)

ωj(z)+1 − ωj(z)

,

m(z) =
(1− q(z))fj(z)ωj(z) +

∑
i>j(z)

fiωi

(1− q(z))fj(z) +
∑

i>j(z)
fi

,

W (z) =
∑

i<j(z)

fiV (ωi) + q(z)fj(z)V (ωj(z)) +

(
(1− q(z))fj(z) +

∑
i>j(z)

fi

)
V (m(z)).

Thus, every z ∈ [ω1, ωn] represents a stochastic upper censorship signal with (ωj(z), q(z)),
where m(z) is the expected state conditional on the pooling signal realization and W (z) is
the value of this signal. Conversely, every stochastic upper censorship signal with (ωj , q) in
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{ω1, ..., ωn−1}× [0,1] can be represented by z = (1− q)ωj + qωj+1 ∈ [ω1, ωn].5 Also note that
z represents deterministic upper censorship iff z ∈ {ω1, ..., ωn}.

Observe that m(z) and W (z) are continuous by construction. Taking the derivative at z /∈
{ω1, . . . , ωn}, we obtain

m′(z) =
q′(z)

∑
i>j(z)

fi(ωi − ωj(z))(
(1− q(z))fj(z) +

∑
i>j(z)

fi

)2 =
q′(z)fj(z)(m(z)− ωj(z))

(1− q(z))fj(z) +
∑

i>j(z)
fi
,

W ′(z) = q′(z)fj(z)(V (ωj(z))− V (m(z)) +m′(z)

(
(1− q(z))fj(z) +

∑
i>j(z)

fi

)
V ′(m(z))

= q′(z)fj(z)
(
V (ωj(z))− V (m(z))− V ′(m(z))(ωj(z) −m(z))

)
=

fj(z)
ωj(z)+1 − ωj(z)

∆(ωj(z),m(z)).

Since ωj(z) and m(z) are increasing in z and fj(z)/(ωj(z)+1 − ωj(z)) > 0, Lemma 1 implies
that W ′(z) is strictly downcrossing in z. This implies that the optimal unrestricted signal is
unique and is stochastic upper censorship with some cutoff ω∗. Furthermore, this implies that
an optimal monotone signal is deterministic upper censorship with the same cutoff ω∗ and some
q∗∗ ∈ {0,1}. Q.E.D.

A.3. Proof of Theorem 2

When the monotonicity constraint is binding (Figures 1c and 1d), the existing approaches
from the Bayesian persuasion literature no longer apply to the monotone persuasion problem.
We first consider a constrained monotone persuasion problem with the two additional con-
straints that monotone signals must satisfy at inflection points ωL and ωR. We show that an
optimal solution to this constrained problem takes the form of interval disclosure or partitions
(almost) all the states into three pooling intervals. Finally, to obtain parts (ii) and (iii) of The-
orem 2, we consider the original monotone persuasion problem without additional constraints,
and show that a monotone signal consisting of three pooling intervals is suboptimal.

It is convenient to represent a monotone signal by a pooling set P ⊂ [0,1] of states that
are not separated by this signal. Since the state is continuous, w.l.o.g., each pooling interval is
open. Thus, the pooling set is a union of some disjoint nonempty open intervals, P =

⋃
i(ξi, ζi).

Let P[0,1] be the set of all open subsets of [0,1].6 A pooling set P ∈ P[0,1] corresponds to the
monotone signal µP given by

µP (ω) =

{
ω, ω /∈ (ξi, ζi) for all i,
E[ω|(ξi, ζi)], ω ∈ (ξi, ζi) for some i.

5An upper censorship with (ωn, q), for any q ∈ [0,1], is the same as the upper censorship with (ωn−1,1).
6We define open sets in [0,1] rather than in R; e.g., [0,1/2)∪ (1/2,1] is open.
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The distribution GP of µP (ω) is given by

GP (ω) =


F (ω), if ω /∈ (ξi, ζi) for all i,
F (ξi), if ω ∈ (ξi,E[ω|(ξi, ζi)]) for some i,

F (ζi), if ω ∈ [E[ω|(ξi, ζi)], ζi) for some i.

Solving the monotone persuasion problem is thus equivalent to finding an optimal pooling set
P ∗ that maximizes

∫ 1

0
V (ω)dGP (ω) over P ∈ P[0,1].

Following Gentzkow and Kamenica (2016) and Kolotilin et al. (2017), we represent signals
as convex functions. Given a pooling set P , define

ΓP (ω) =

∫ ω

0

GP (ω̃)dω̃ for all ω ∈ [0,1].

Similarly to Kolotilin et al. (2017), we have the following optimality criterion.

LEMMA 2: A pooling set P ∗ is optimal iff it solves

max
P∈P[0,1]

∫ 1

0

V ′′(ω)ΓP (ω)dω. (13)

PROOF: Since V is twice continuously differentiable, we can integrate by parts twice,∫ 1

0

V (ω)dGP (ω) = V (ω)GP (ω)|10 −
∫ 1

0

V ′(ω)GP (ω)dω

= V (ω)GP (ω)|10 − V ′(ω)ΓP (ω)|10 +
∫ 1

0

V ′′(ω)ΓP (ω)dω

=V (1)− V ′(1)(1−E[ω]) +
∫ 1

0

V ′′(ω)ΓP (ω)dω, (14)

where the last equality follows from

ΓP (1) =

∫ 1

0

GP (ω)dω = ωGP (ω)|10 −
∫ 1

0

ωdGP (ω) = 1−E[ω].

Since only the last term of (14) depends on P , the proposition follows. Q.E.D.

As (13) suggests, the optimal pooling set P ∗ should be chosen to make ΓP (ω) large at states
ω where V ′′(ω) is positive, and small at states where V ′′(ω) is negative. Separating state ω
increases ΓP (ω), so full disclosure (P ∗ =∅) is optimal iff V (ω) is convex in ω. In contrast, no
disclosure (P ∗ = [0,1]) is optimal if V (ω) is concave in ω. These conditions for the optimality
of full disclosure and no disclosure follow easily from Lemma 2. In turn, Lemma 3 collects
useful properties of the function ΓP .

LEMMA 3: For all P ∈ P[0,1],
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(i) ΓP (ω) is convex in ω.
(ii) Γ[0,1](ω)≤ ΓP (ω)≤ Γ∅(ω) for all ω ∈ [0,1].
(iii) ΓP (ω) = Γ∅(ω) iff ω /∈ P .

PROOF: Part (i) holds because ΓP (ω) =
∫ ω

0
GP (ω̃)dω̃ and GP (ω) is a (non-decreasing)

distribution function. For parts (ii) and (iii), we first show that∫ ω

0

GP (ω̃)dω̃ =ΓP (ω)≤ Γ∅(ω) =

∫ ω

0

F (ω̃)dω̃ for all ω ∈ [0,1],

with equality iff ω /∈ P . It is sufficient to observe that for each disjoint interval (ξi, ζi) of P , we
have∫ ω

ξi

GP (ω̃)dω̃ = F (ξi)(ω− ξi)<

∫ ω

ξi

F (ω̃)dω̃ for ω ∈ (ξi,E[ω|(ξi, ζi)]),∫ ζi

ω

GP (ω̃)dω̃ = F (ζi)(ζi − ω)>

∫ ζi

ω

F (ω̃)dω̃ for ω ∈ [E[ω|(ξi, ζi)], ζi),∫ ζi

ξi

GP (ω̃)dω̃ = F (ξi)(E[ω|(ξi, ζi)]− ξi) + F (ζi)(ζi −E[ω|(ξi, ζi)]) =
∫ ζi

ξi

F (ω̃)dω̃,

where each line holds, respectively, because

F (ξi)<F (ω) for ω ∈ (ξi,E[ω|(ξi, ζi)]),

F (ζi)>F (ω) for ω ∈ [E[ω|(ξi, ζi)], ζi),∫ ζi

ξi

F (ω̃)dω̃ = F (ω)ω|ζiξi −
∫ ζi

ξi

ω̃dF (ω̃) = F (ζi)ζi − F (ξi)ξi − (F (ζi)− F (ξi))E[ω|(ξi, ζi)].

Similarly, the remainder of part (ii) that Γ[0,1](ω)≤ ΓP (ω) for all ω ∈ [0,1] follows from∫ ω

0

G[0,1](ω̃)dω̃ ≤
∫ ω

0

GP (ω̃)dω̃ for ω ∈ (0,E[ω]),∫ 1

ω

G[0,1](ω̃)dω̃ ≥
∫ 1

ω

GP (ω̃)dω̃ for ω ∈ [E[ω],1),∫ 1

0

G[0,1](ω̃)dω̃ =

∫ 1

0

GP (ω̃)dω̃,

where each line holds, respectively, because

G[0,1](ω) = 0≤GP (ω) for ω ∈ (0,E[ω]),

G[0,1](ω) = 1≥GP (ω) for ω ∈ [E[ω],1),
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FIGURE A.2.—Optimal pooling set P ∗ given ω∗
L ≤ ω∗

R

∫ 1

0

GP (ω)dω = ωGP (ω)|10 −
∫ 1

0

ωdGP (ω) = 1−E[ω]. Q.E.D.

PROOF OF THEOREM 2: Define Y as the set of pairs (yL, yR) ∈ R2
+ such that ΓP (ωL) =

yL and ΓP (ωR) = yR for some P ∈ P[0,1]. Fix (yL, yR) ∈ Y . We first consider problem (13)
subject to the two additional constraints that ΓP (ωL) = yL and ΓP (ωR) = yR.

P ∗ ∈ arg max
P∈P[0,1]

∫ 1

0

V ′′(ω)ΓP (ω)dω

subject to ΓP (ωL) = yL and ΓP (ωR) = yR.

(15)

Let ω∗
L ≥ ωL be the tangency point of a tangent line to Γ∅ that passes through the point

(ωL, yL), and let ω∗
R ≤ ωR be the tangency point of a tangent line to Γ∅ that passes through the

point (ωR, yR) (Figure A.2). Formally, define

ω∗
L =min{ω ∈ [ωL,1] : Γ[0,ω)(ωL) = yL},

ω∗
R =max{ω ∈ [0, ωR] : Γ(ω,1](ωR) = yR}.

CLAIM 1: If ω∗
L ≤ ω∗

R, then P ∗ = [0, ω∗
L)∪ (ω∗

R,1] solves (15).

PROOF: By Lemma 3, for any P ∈ P[0,1] such that ΓP (ωL) = yL and ΓP (ωR) = yR, we
have ΓP (ω) is convex in ω and Γ[0,1](ω)≤ ΓP (ω)≤ Γ∅(ω) for all ω ∈ [0,1]. It is easy to verify
(Figure A.2) that for any such ΓP , we have ΓP∗(ω) ≤ ΓP (ω) for ω ∈ [0, ωL) ∪ (ωR,1] and
ΓP∗(ω)≥ ΓP (ω) for ω ∈ (ωL, ωR). Since V ′′(ω)≤ 0 for ω ∈ [0, ωL)∪ (ωR,1] and V ′′(ω)≥ 0

for ω ∈ (ωL, ωR), the set P ∗ solves (15). Q.E.D.
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** ωR
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yL
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Γ
Γ∅(ω)

Γ[0,1](ω)
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(a) Γ(ω∗∗
L

,1](ωR) ̸= yR and Γ[0,ω∗∗
R

)(ωL) ̸= yL

ωLωL
** ωR 1
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Γ

Γ∅(ω)
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ΓP*(ω)

ΓP(ω)

(b) Γ(ω∗∗
L

,1](ωR) = yR

FIGURE A.3.—Optimal pooling set P ∗ given ω∗
L >ω∗

R

Let ω∗∗
L ≤ ωL be the tangency point of a tangent line to Γ∅ that passes through the point

(ωL, yL), and let ω∗∗
R ≥ ωR be the tangency point of a tangent line to Γ∅ that passes through

the point (ωR, yR) (Figure A.3a). Formally, define

ω∗∗
L =min{ω ∈ [0, ωL] : Γ(ω,1](ωL) = yL},

ω∗∗
R =max{ω ∈ [ωR,1] : Γ[0,ω)(ωR) = yR}.

(16)

CLAIM 2: Suppose ω∗
L >ω∗

R.
(i) If Γ(ω∗∗

L
,1](ωR) = yR, then P ∗ = [0, ω∗∗

L )∪ (ω∗∗
L ,1] solves (15).

(ii) If Γ[0,ω∗∗
R

)(ωL) = yL, then P ∗ = [0, ω∗∗
R )∪ (ω∗∗

R ,1] solves (15).
(iii) Otherwise, P ∗ = [0, ω∗∗

L )∪ (ω∗∗
L , ω∗∗

R )∪ (ω∗∗
R ,1] solves (15).

PROOF: The proof of parts (i) and (ii) is analogous to the proof of Claim 1 (Figure A.3b).
We now outline the proof of part (iii), omitting tedious details. The reader may refer to Figure

A.3a for guidance. If ω∗
L >ω∗

R with (yL, yR) ∈ Y , then

yL +
yR − yL
ωR − ωL

(ω− ωL)< Γ∅(ω) for ω ∈ [ωL, ωR]. (17)

Taking into account (17), if Γ(ω∗∗
L

,1](ωR) ̸= yR and Γ[0,ω∗∗
R

)(ωL) ̸= yL with (yL, yR) ∈ Y , then
ω∗∗

L ∈ [0, ωL) and ω∗∗
R ∈ (ωR,1]. We can then show, using the definitions of GP and ΓP , that

ΓP (ωL) = yL and ΓP (ωR) = yR with (yL, yR) ∈ Y iff (ω∗∗
L , ω∗∗

R ) is a disjoint interval in P . By
Lemma 3, for any such P , we have ΓP∗(ω) = ΓP (ω) for ω ∈ [ω∗∗

L , ω∗∗
R ] and ΓP∗(ω)≤ ΓP (ω)

for ω ∈ [0, ω∗∗
L )∪ (ω∗∗

R ,1]. Since V ′′(ω)≤ 0 for ω ∈ [0, ω∗∗
L )∪ (ω∗∗

R ,1]⊂ [0, ωL)∪ (ωR,1], the
set P ∗ solves (15). Q.E.D.
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**,1)] 1
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FIGURE A.4.—Optimal pooling set P ∗∗ = [0, ω∗∗
L )∪ (ω∗∗

L , ω∗∗
R )∪ (ω∗∗

R ,1]

We now consider the original problem (13), without the constraints that ΓP (ωL) = yL and
ΓP (ωR) = yR.

CLAIM 3: Suppose P ∗∗ = [0, ω∗∗
L ) ∪ (ω∗∗

L , ω∗∗
R ) ∪ (ω∗∗

R ,1] solves (13) where ω∗∗
L > 0,

ω∗∗
R < 1, and (16) holds with yL = ΓP∗(ωL) and yR = ΓP∗(ωR). Let m∗∗

M = E[ω|(ω∗∗
L , ω∗∗

R )].
If m∗∗

M >ωL, then P ∗ = [0, ω∗∗
L )∪ (ω∗∗

L ,1] also solves (13). If m∗∗
M <ωR, then P ∗ = [0, ω∗∗

R )∪
(ω∗∗

R ,1] also solves (13).

PROOF: By (13), we have ω∗∗
L ≤ ωL and ω∗∗

R ≥ ωR. Thus, m∗∗
L <ωL and m∗∗

R >ωR, where
m∗∗

L = E[ω|[0, ω∗∗
L )] and m∗∗

R = E[ω|(ω∗∗
R ,1]].

The value of P ∗∗ = [0, ω∗∗
L )∪ (ω∗∗

L , ω∗∗
R )∪ (ω∗∗

R ,1] is

v∗∗ =

∫ 1

0

V (ω)dGP∗∗(ω)

= V (m∗∗
L )F (ω∗∗

L ) + V (m∗∗
M )(F (ω∗∗

R )− F (ω∗∗
L )) + V (m∗∗

R )(1− F (ω∗∗
R )).

Since ω∗∗
R is interior, it satisfies the following first-order condition. Taking into account that

dm∗∗
M

dω∗∗
R

=
f(ω∗∗

R )

F (ω∗∗
R )− F (ω∗∗

L )
(ω∗∗

R −m∗∗
M ) and

dm∗∗
R

dω∗∗
R

=
f(ω∗∗

R )

1− F (ω∗∗
R )

(m∗∗
R − ω∗∗

R ),

we have

dv∗∗

dω∗∗
R

= f(ω∗∗
R ) (V (m∗∗

M ) + V ′(m∗∗
M )(ω∗∗

R −m∗∗
M )− V (m∗∗

R )− V ′(m∗∗
R )(ω∗∗

R −m∗∗
R )) = 0,
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which can be rewritten as

V (m∗∗
M ) + V ′(m∗∗

M )(ω∗∗
R −m∗∗

M ) = V (m∗∗
R ) + V ′(m∗∗

R )(ω∗∗
R −m∗∗

R ). (18)

Consider now the case where m∗∗
M > ωL. Combining (18) with the fact that V is either

concave on (m∗∗
M ,1] or convex on (m∗∗

M , ωR) and concave on (ωR,1], Lemma 1 (Figure A.4)
implies that

V (ω)≥ m∗∗
R − ω

m∗∗
R −m∗∗

M

V (m∗∗
M ) +

ω−m∗∗
M

m∗∗
R −m∗∗

M

V (m∗∗
R ) for ω ∈ (m∗∗

M ,m∗∗
R ),

which, given E[ω|(ω∗∗
L ,1]] ∈ (m∗∗

M ,m∗∗
R ), implies, for P ∗ = [0, ω∗∗

L )∪ (ω∗∗
L ,1],∫ 1

0

V (ω)dGP∗(ω) = V (m∗∗
L )F (ω∗∗

L ) + V (E[ω|(ω∗∗
L ,1]])(1− F (ω∗∗

L ))

≥ V (m∗∗
L )F (ω∗∗

L ) + V (mM
⋆ )(F (ω∗∗

R )− F (ω∗∗
L )) + V (m∗∗

R )(1− F (ω∗∗
R ))

=

∫ 1

0

V (ω)dGP∗∗(ω),

showing that P ∗ also solves (13), if m∗∗
M > ωL. A symmetric argument applies when m∗∗

M <

ωR. Q.E.D.

Combining Claims 1 – 3, we conclude that P ∗ takes one of three forms: [0, ω∗
L) ∪ (ω∗

R,1]

with ωL ≤ ω∗
L <ω∗

R ≤ ωR, or [0, ω∗
M)∪ (ω∗

M ,1] with ω∗
M ∈ (0,1), or [0,1]. Q.E.D.

A.4. Proof of Proposition 1

Let X ⊂ C . For each ω ∈ [0,1], define cX(ω) = sup({c ∈C\X : c≤ ω} ∪ {0}), cX(ω) =
inf ({c ∈C\X : c > ω} ∪ {1}), and µ(ω) = E[θ|θ ∈ [cX(ω), cX(ω)]]. Observe that µ is a
monotone signal such that Gµ =GX . Thus, GC ⊂ GM .

Conversely, let µ ∈ M. For each m such that µ(ω) = m for some ω ∈ supp(F ), define
xµ(m) = inf {ω ∈ supp(F ) : µ(ω) =m}, xµ(m) = sup{ω ∈ supp(F ) : µ(ω) =m}, and X =(⋃

m∈µ(supp(F ))(xµ(m), xµ(m)]
)⋂

C . Observe that X is a censorship policy such that GX =
Gµ. Thus, GM ⊂ GC . Q.E.D.
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